Gradient-based optimization methods for sensor & actuator placement in LTI systems

نویسندگان

  • C. COLBURN
  • D. ZHANG
  • T. BEWLEY
چکیده

This paper develops efficient techniques for calculating gradient information which may be used to optimize the placement of sensors & actuators of a given precision for the effective estimation and control of high-dimensional discretizations of infinite-dimensional linear time-invariant (LTI) systems. The necessary gradients are determined in this setting via adjoint analyses which quantify the effects of small variations of the observation and control operators. The approach can be modified appropriately to fit a variety of specific objectives within the Linear Quadratic Gaussian (LQG) estimation/control framework. Unlike other work in this area, we work directly with the covariance of the estimation error P, rather than working with the Fischer information matrix M, which is, in a sense, a best-case estimate of P−1 that neglects the impact of the state disturbances on the evolution of the state estimation error. The method is tested by optimizing the placement of two sensors and two actuators in a 1D complex Ginzburg-Landau system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems

The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...

متن کامل

Optimal Locations on Timoshenko Beam with PZT S/A for Suppressing 2Dof Vibration Based on LQR-MOPSO

Neutralization of external stimuli in dynamic systems has the major role in health, life, and function of the system. Today, dynamic systems are exposed to unpredicted factors. If the factors are not considered, it will lead to irreparable damages in energy consumption and manufacturing systems. Continuous systems such as beams, plates, shells, and panels that have many applications in differen...

متن کامل

An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems

Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...

متن کامل

H 2 optimal actuator and sensor placement in the linearised complex Ginzburg – Landau system

The linearised complex Ginzburg–Landau equation is a model for the evolution of small fluid perturbations, such as in a bluff body wake. By implementing actuators and sensors and designing an H2 optimal controller, we control a supercritical, infinite-domain formulation of this system. We seek the optimal actuator and sensor placement that minimises the H2 norm of the controlled system, from fl...

متن کامل

Vibration Attenuation Timoshenko Beam Based on Optimal Placement Sensors/Actuators PZT Patches with LQR-MOPSO

The main objective of this study is to reduce optimal vibration suppression of Timoshenko beam under non-periodic step and impulse inputs. Cantilever beam was modeled by Timoshenko theory and finite element numerical method. Stiffness (K), mass (M), and damping (C) matrices are extracted. Then, in order to control structure vibration, piezoelectric patches were used due to simultaneous dual beh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011